
7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0))

Implementing Interaction Techniques

(structure and 2D content based on CS4470/6456 slides by Keith Edwards)

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 2

Recap: Interaction techniques

l A method for carrying out a specific interactive task
l Example: enter a number in a range

l could use… (simulated) slider
l (simulated) knob
l type in a number (text edit box)

l Each is a different interaction technique

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 3

Suppose we wanted to
implement an interaction for
specifying a line

l Could just specify two endpoints
l click, click
l not good: no affordance,no feedback

l Better feedback is to use “rubber banding”
l stretch out the line as you drag
l at all times, shows where you would end up if you “let go”

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 4

Aside

l Rubber banding provides good feedback
l How would we provide better affordance?

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 5

Aside

l Rubber banding provides good feedback
l How would we provide better affordance?

l Changing cursor shape is about all we have to work with

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 6

Implementing rubber banding

Accept the press for endpoint p1;
P2 = P1;
Draw line P1-P2;
Repeat
 Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
Until release event;
Act on line input;

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 7

Implementing rubber banding

l Need to get around this loop absolute min of 5 times / sec
l 10 times better
l more would be better

l Notice we need “undraw” here

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 8

What’s wrong with this code?

Accept the press for endpoint p1;
P2 = P1;
Draw line P1-P2;
Repeat
 Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
Until release event;
Act on line input;

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 9

Not event driven

l Not in the basic event / redraw cycle form
l don’t want to mix event and sampled
l in many systems, can’t ignore events for arbitrary lengths of time

l How do we do this in a normal event / redraw loop?

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 10

You don’t get to write control
flow anymore

l Basically have to chop up the actions in the code above and
redistribute them in event driven form
l “event driven control flow”
l need to maintain “state” (where you are) between events and

start up “in the state” you were in when you left off

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 11

Finite state machine controllers

l One good way to maintain “state” is to use a state machine
l (deterministic) finite state machine

l FSM

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 12

FSM notation

l Circles represent states
l arrow for start state
l double circles for “final states”

l notion of final state is a little off for user
interfaces (don’t ever end)

l but still use this for completed actions
l generally reset to the start state

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 13

FSM notation

l Transitions represented as arcs
l Labeled with a “symbol”

l for us an event (can vary)
l Also optionally labeled with an action

BA

Mouse_Dn / Draw_Line()

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 14

FSM Notation

l Means: when you are in state A and you see a mouse
down, do the action (call draw_line), and go to state B

BA

Mouse_Dn / Draw_Line()

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 15

FSM Notation

l Sometimes also put actions on states
l same as action on all incoming transitions

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 16

Rubber banding again
(cutting up the code)

Accept the press for endpoint p1;
A: P2 = P1;
 Draw line P1-P2;
 Repeat
B: Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;
 Until release event;
C: Act on line input;

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 17

A: P2 = P1;
 Draw line P1-P2;
B: Erase line P1-P2;
 P2 = current_position();
 Draw line P1-P2;

FSM control for rubber banding

Press / A

Move / B

Release / C

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0))

In a SceneGraph, Lines are Objects
l https://doc.babylonjs.com/snippets/line2d

l Tube as line https://www.babylonjs-playground.com/#MRE78Z

l Recreate each frame
l https://www.babylonjs-playground.com/#NU4F6Y#242

18

https://doc.babylonjs.com/snippets/line2d
https://www.babylonjs-playground.com/#MRE78Z
https://www.babylonjs-playground.com/#NU4F6Y%23242

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 19

Second example: button

Press inside highlight
Move in/out change highlight
Release inside act
Release outside do nothing

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 20

FSM for a button?

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 21

FSM for a button

Press-inside / A

Leave / BEnter / C

Release / D

Release / E

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 22

FSM for a button

A: highlight button
B: unhighlight button
C: highlight button
D: <do nothing>
E: do button action

Press-inside / A

Enter / C Leave / B

Release / D

Release / E

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 23

In general...

l Machine states represent context of interaction
l “where you are” in control flow

l Transitions indicate how to respond to various events
l what to do in each context

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 24

“Events” in FSMs

l What constitutes an “event” varies
l may be just low level events, or
l higher level (synthesized) events

l e.g. region-enter, press-inside

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 25

Guards on transitions

l Sometimes also use “guards”
l predicate (boolean expression) before event
l adds extra conditions req to fire
l typical notation: pred: event / action

l e.g. button.enabled: press-inside / A

l Note: FSM augmented with guards is Turing complete

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 26

FSM are a good way to do
control flow in event driven
systems

l Can do (formal or informal) analysis
l are all possible inputs (e.g. errors) handled from each state
l what are next legal inputs

l can use to enable / disable
l Can be automated based on higher level specification

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 27

Implementing FSMs

state = start_state;
for (;;) {
raw_evt = wait_for_event();
evt = transform_event(raw_evt);

 state = fsm_transition(state, evt);
}

l Note that this is basically the normal event loop

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 28

Implementing FSMs

fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state

 case 1: // case for next state

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 29

Implementing FSMs
fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state
 switch (evt.kind)
 case loc_move: // trans evt
 … action … // trans action
 state = 42; // trans target
 case loc_dn:
 ...
 case 1: // case for next state
 switch (evt.kind) …
return state;

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 30

Implementing FSMs
fsm_transition(state, evt)
 switch (state)
 case 0: // case for each state
 switch (evt.kind)
 case loc_move: // trans evt
 … action … // trans action
 state = 42; // trans target
 case loc_dn:
 ...
 case 1: // case for next state
 switch (evt.kind) …
return state;

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 31

Table driven implementation

l Very stylized code
l Can be replaced with fixed code + table that represents FSM

l only have to write the fixed code once
l can have a tool that generates table from something else

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 32

Table driven implementation

l Table consists of array of states
l Each state has list of transitions
l Each transition has

l event match method
l list of actions (or action method)
l target state

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0)) 33

Table driven implementation

fsm_transition(state, evt)
for each transition TR in table[state]
 if TR.match(evt)
 TR.action();
 state = TR.to_state();
 break;
return state

l Simpler: now just fill in table

7

Copyright 2020 Blair MacIntyre ((CC BY-NC-SA 4.0))

Lots of implementations
in every language
l Typescript, simple search reveals

l https://github.com/eram/ts-fsm
l https://github.com/eonarheim/TypeState
l https://github.com/raphaelfeng/typescript-state-machine
l …

l Pick one that you feel makes sense!

34

https://github.com/eram/ts-fsm
https://github.com/eonarheim/TypeState
https://github.com/raphaelfeng/typescript-state-machine

