Input part 3: Interaction Techniques

(structure and 2D content based on CS4470/6456 slides by Keith Edwards)

Interaction techniques

- A method for carrying out a specific interactive task
 - Example: enter a number in a range
 - could use... (simulated) slider
 - (simulated) knob
 - type in a number (text edit box)
 - Each is a different interaction technique

6

Interaction techniques in libraries

- Generally ITs now come in the form of "Widgets", "controls", "components", "interactors"
- Typically in reusable libraries
 - e.g. widget sets / class libraries
- Also need custom ones

Design of interaction techniques

- Just going to say a little
- Guidelines for interaction technique design
 - Affordance
 - Feedback
 - Mechanics (incl. performance)
 - Gee, these sound sort of familiar if you've taken HCI...

Affordance

- Can you tell what it does and what to do with it by looking at it?
 - Most important for novices
 - but almost all start as novices
 - if people don't get past being novices you fail

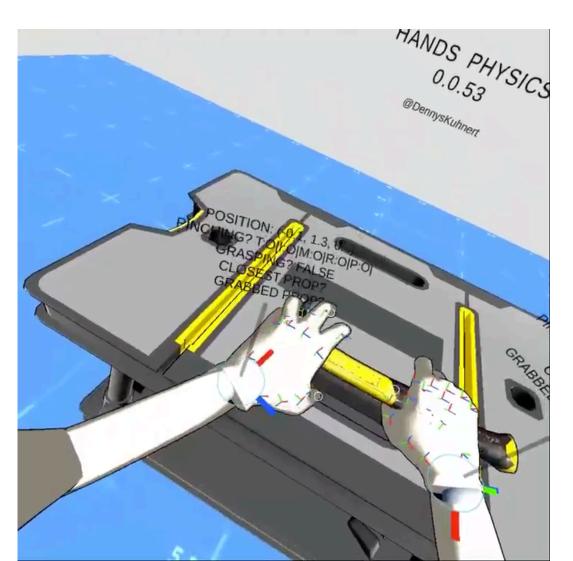
(Historical sidebar on "affordances")

- Affordances as a concept originally introduced by J.J. Gibson (1977), a
 perceptual psychologist
 - Referred to "actionable properties" between the world and a person
 - Relationship between these things, not always visible or even known
- Appropriated by Don Norman in Psychology of Everyday Things
 - But he basically redefined Gibson's term to mean: does the thing make it self-obvious what we can do with it?
- Has since clarified (backtracked?) but his older definition has stuck with much of HCI
 - Should have written "perceived affordances"
 - But be careful when using the term, as affordance purists will likely take objection...

Feedback

- Can you tell what it's doing?
- Can you tell the consequences of the actions?
 - e.g. Folders highlight when you drag over them indicating that if you "let go" the file will go inside the folder
 - very important to reliable operation
 - important for all users

Mechanics: "feel" and difficulty


- Fitts' law tells us about difficulty
 - predicts time to make a movement
- "Feel" is trickier
 - Can depend on physical input dev
 - physical movements, forces, etc.
 - Really gets back to the difficulty of the movement, but harder to characterize
- Important for all, but esp. experts

Visual Feedback in VR w/o Haptics

6

https://twitter.com/DennysKuhnert/status/1229459958674132993

Fitts' law

Time =
$$A + B*log_2(Dist/Size + 0.5)$$

- Time is linearly proportional to log of "difficulty"
 - proportionality constants depend on muscle group, and device
 - Difficulty controlled by distance and required accuracy (size of target)

Fitts' law

- The *mechanical* component of true expert performance tends to be closely related to time required for movements
 - not well related to learning (or performance) of novices
 - still need to consider "cognitive load"

Fitts' law

- Actual numbers from Fitts' law generally not all that helpful
 - that level of detailed analysis is hard
- General guideline: this all boils down to a few simple properties:
 - Keep required movements (accuracy & distance) firmly in mind
 - Avoid device swapping
 - Avoid disturbing focus of attention

Mini case study #1 The original "Macintosh 7"

- Macintosh (1984) was first big success of GUIs
 - originally came with 7 interactors built into toolbox (hence used for majority)
- Most not actually original w/ Mac
 - Xerox Star (+ Smalltalk & earlier)

The Macintosh 7

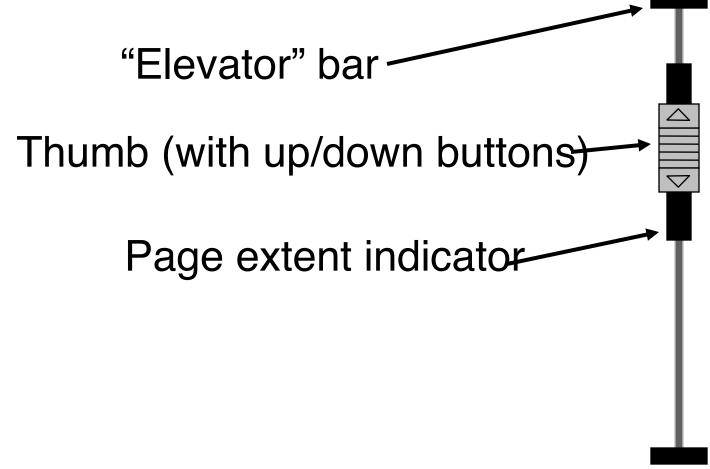
- Generally very well designed (iterated with real users!)
 - very snappy performance
 - dedicated whole processor to updating them (little or no "OS")
- Huge influence
 - These 7 still cover a lot of today's GUIs (good and bad to that)

Button

- Shaped as rounded rectangles (about "modern" square corners...)
- Inverted for feedback
 - Recall Mac was pure B/W machine
 - Pseudo 3D appearance hard and hadn't been invented yet

6

Slider


- Used for scroll bars (but fixed size "thumb")
 - Knurling on the thumb
 - "Pogo stick" problem

6

Aside: a different scrollbar design

Openlook scroll bar

Pulldown menu

- This was original with Mac
- Differs slightly from Windows version you may be familiar with
 - had to hold down button to keep menu down (one pressdrag-release)
 - Changed in later versions
- Items highlight as you go over
- Selected item flashes

Check boxes, radio buttons, text entry / edit fields

6

- Pretty much as we know them
- Single or multi-line text supported from the beginning

File pick / save

- Much more complex beast than the others
 - built from the others + some
 - e.g. no affordance, by you could type and file list would scroll to typed name

Original Mac also had others

- Window close and resize boxes
- Drag & open file icons and folders
- Not made generally available
 - not in toolbox, so not (re)usable by other programmers

Second major release of Mac added a few

- Lists
 - single & multiple selection
 - from textual lists (possibly with icons)
- Hierarchical ("pull-right") menus
- Compact ("in-place") menus
 - select one-of-N pulldown
- Window zoom box

Have seen a few more added since then

- Tabbed dialogs now widely used
- Hierarchical lists (trees)
- "Combo boxes"
 - Combination(s) of menu, list, text entry
- A few more + variations on things
- Typically don't see much more than that

Almost all GUIs supported with the above 10-12 interactor types

- Good ones that work well
 - uniformity is good for usability
- But, significant stagnation
 - "dialog box mindset"
 - opportunities lost by not customizing interaction techniques to tasks

Mini case study 2: Menus

- Menu
 - supports selection of an item from a fixed set
 - usually set determined in advance
 - typically used for "commands"
 - occasionally for setting value (e.g., picking a font)

Design alternatives for menus

- Simple, fixed location menus (see these on the web a lot)
 - easy to implement
 - good affordances
 - easy for novices (always same place, fully visible)
 - Focus of attention problems
 - Screen space hog

6

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - close to cursor
 - not under it, why?

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - close to cursor
 - What does Fitts' law say about this?

6

Popup menus

- Menu pops up under the cursor (sometimes via "other button")
 - close to cursor
 - Fitts law says: very fast
 - also focus not disturbed
 - takes no screen space (until used)
 - can be context dependent (!)
 - poor (non-existent) affordance

Getting best of both: Mac pulldown menus

- Menu bar fixed at top of screen, with pull-down submenus
 - benefits of fixed location
 - provides good affordance
 - good use of space via partial popup
 - but splits attention & requires long moves

6

Fitts' law effects

- Windows menus at top of windows, vs. Mac menus at top of screen
 - Interesting Fitts' law effect
 - what is it?

Fitts' law effects

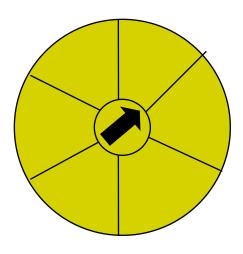
- Windows menus at top of windows, vs. Mac menus at top of screen
 - Interesting Fitts' law effect
 - thin target vertically (direction of move) => high required accuracy
 - hard to pick
 - but... (anybody see it?)

Fitts' law effects

 With menu at top of screen can overshoot by an arbitrary amount

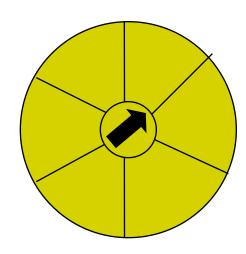
(Example of a "barrier" technique)

What does Fitts' law say about that?


Fitts' law effects

- With menu at top of screen can overshoot by an arbitrary amount
 - very large size (dominated by horizontal which is wide)
 - Original Mac had 9" screen so distance not really an issue
 - very fast selection

Pie menus


- A circular pop-up menu
 - no bounds on selection area
 - basically only angle counts
 - do want a "dead area" at center
 - What are Fitts' law properties?

Pie menus

- A circular pop-up menu
 - no bounds on selection area
 - basically only angle counts
 - do want a "dead area" at center
 - Fitts' law properties:
 - minimum distance to travel
 - minimum required accuracy
 - very fast

Pie menus

• Why don't we see these much?

Pie menus

- Why don't we see these much?
 - Just not known
 - Harder to implement
 - particularly drawing labels
 - but there are variations that are easier
 - Don't scale past a few items
 - Hierarchy hard: think it through

Beating Fitts' law

- Can't really beat it
 - property of being human
 - but you can "cheat"!
- One approach: avoid the problem
 - use a non-pointing device
 - shortcuts & fixed buttons
 - mouse wheel for scrolling

Beating Fitts' law

- Not everything can be a shortcut
- Other major approach: manipulate interface to reduce difficulty
 - distance (put things close)
 - but not everything can be close
 - have to make them smaller!

Beating Fitts' law

- Most ways to "cheat" involve manipulating size
 - typically can't make things bigger w/o running out of screen space (but look at that as an option)
 - but... can sometimes make things act bigger than they are

"Cheating" on target size

- Consider targets that are not just passive
 - not all movements end in "legal" or useful positions
 - map (nearby) "illegal" or non-useful onto "legal ones"
 - hit of "illegal" position treated as legal
 - e.g. positions above Mac menubar
 - effective size bigger

Snapping (or "gravity fields")

- Treat movement to an "illegal" point as if it were movement to closest "legal" (useful / likely) pt
 - Cursor or other feedback snaps to "legal" position
 - Drawn to it as if it has gravity

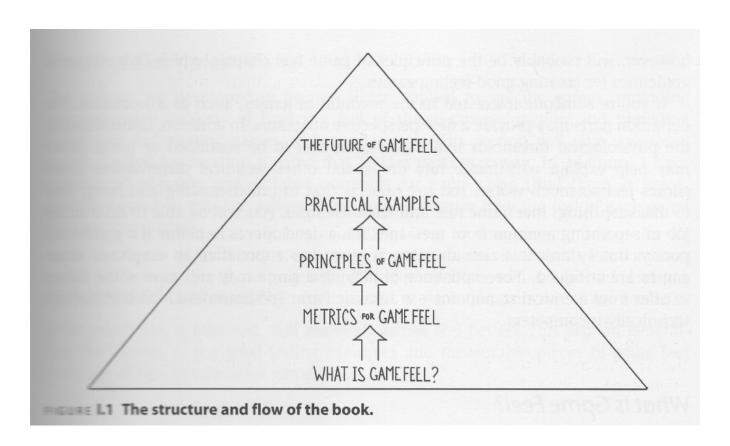
Snapping

- Simplest: grids
- Constrained orientations & sizes
 - 90° & 45°, square
- More sophisticated: semantic
 - only attach circuit diagram items at certain spots

Snapping

- Even more sophisticated: dynamic semantics
 - Check legality and consequences of each result at every move
 - don't catch errors, prevent them!

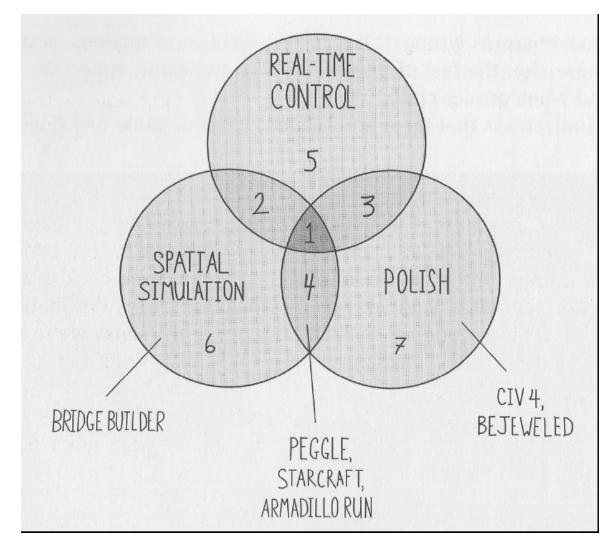
Game Feel


- by Steve Swink
- Focused on how to create experiences that feel good to play

Game Feel

http://game-feel.com

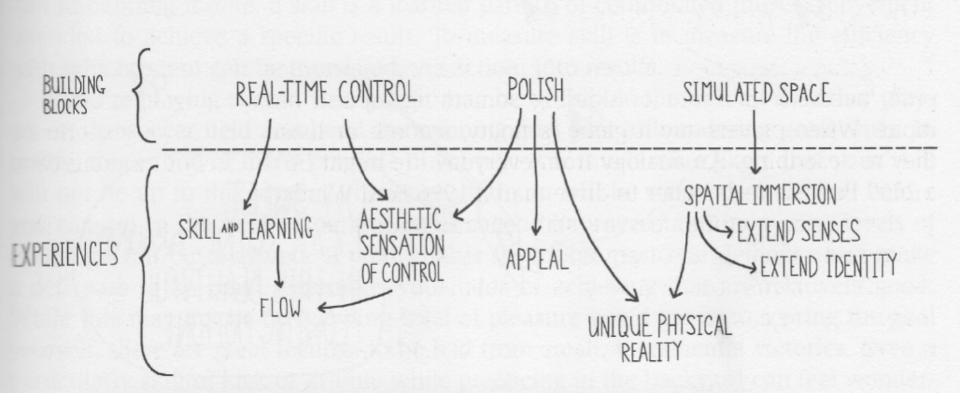
What is Game Feel?


- What does it mean for a game character to feel
 - Floaty? Heavy? Loose? Twitchy?
- Three parts
 - Real-Time Control
 - Simulated Space
 - Polish

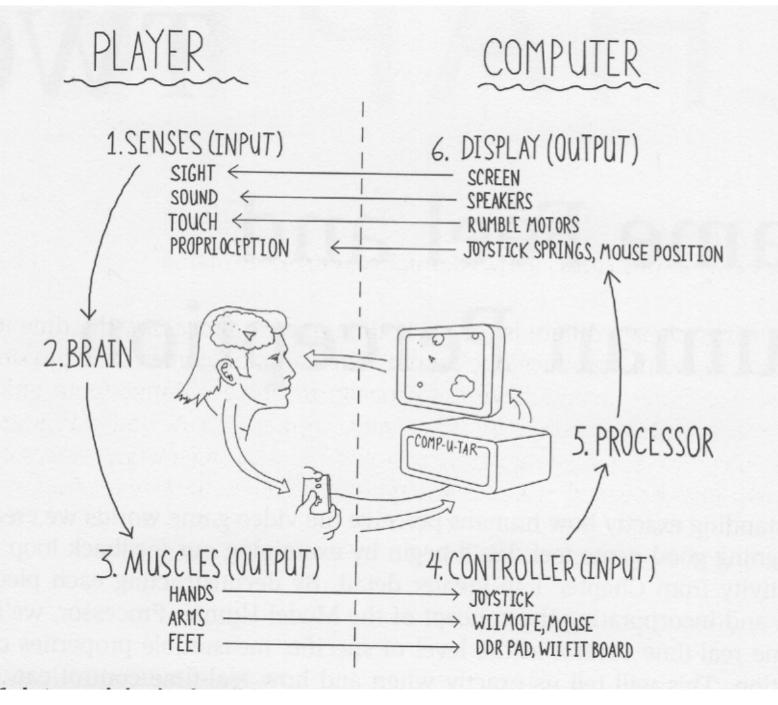
What is Game Feel?

A definition

"Real time control of virtual objects in a simulated space, with interactions emphasized by polish."

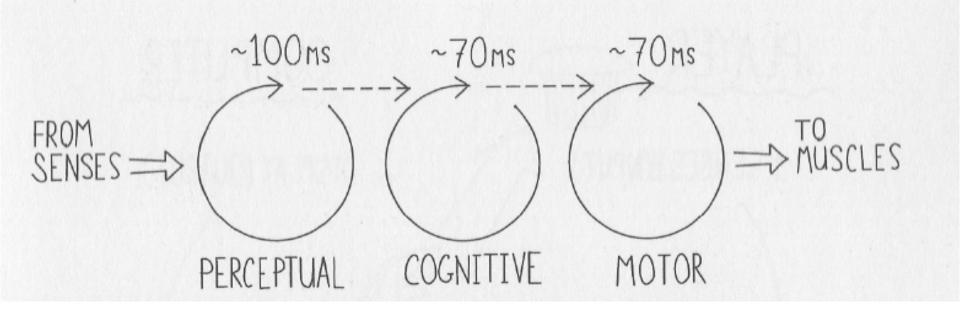

(activity)

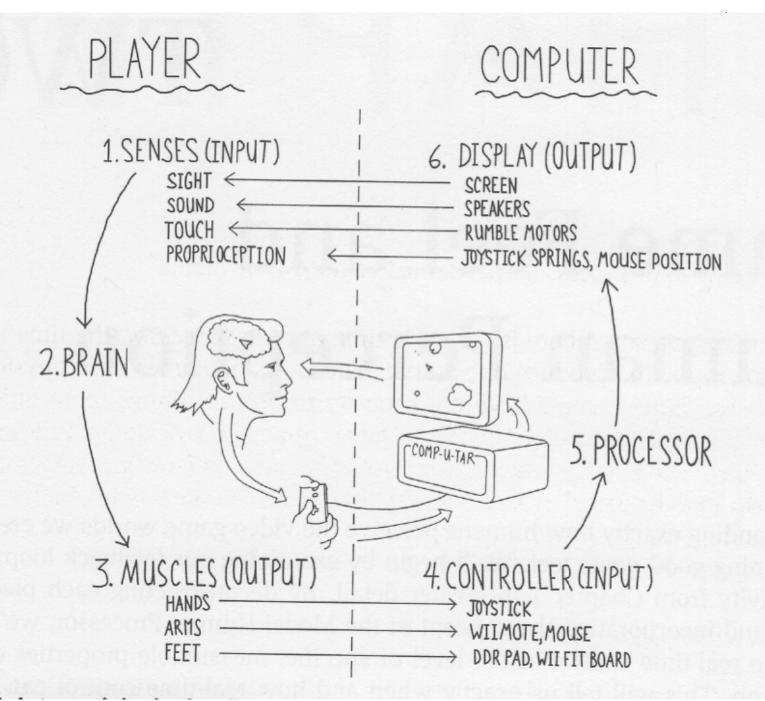
Experiences of Game Feel

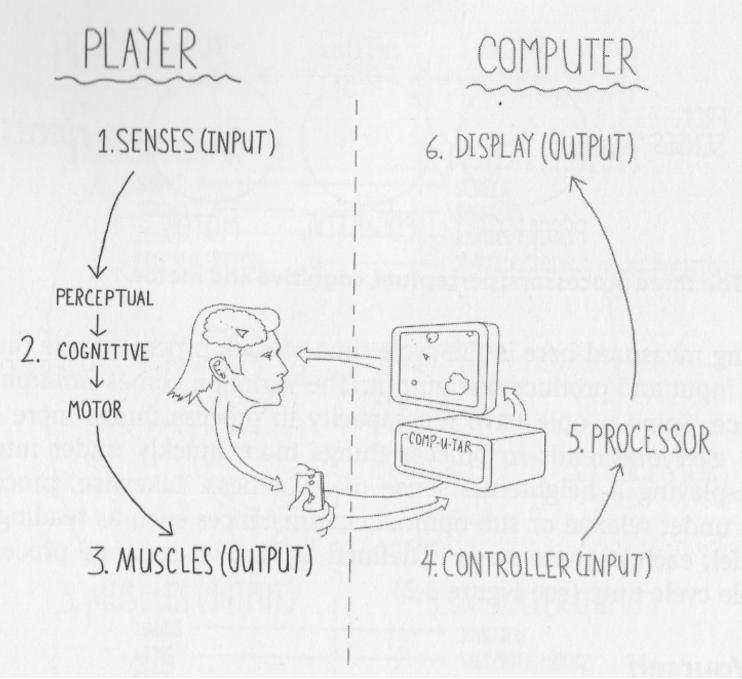

- Aesthetic Sensation of Control
- Pleasure of Learning, Practicing, Mastering
- Extension of the senses
- Extension of identity
- Interaction w/ unique phys reality

Human Perception and Interactivity

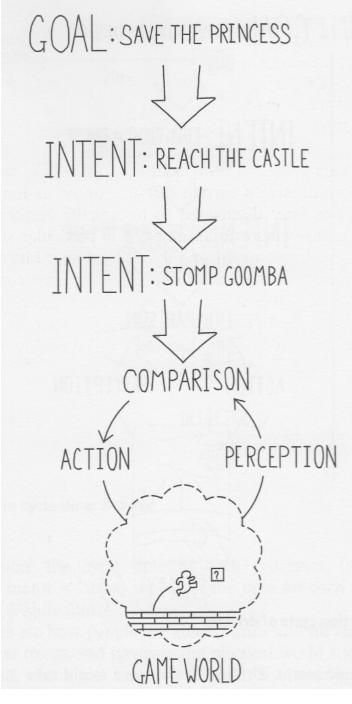
- Ch2 is essentially asking
 - Can we be more precise about what real-time control means from a people and computer side?




Understanding People


- 3 parts, from HCI
 - Model-Human Processor: how people perceive and react to the world
 - Correction Cycle: what this means in practice for building reactive systems
 - Fitts' Law: a remarkably resilient model that combines target size & distance to predict how long it takes to touch something

Model-Human Processor



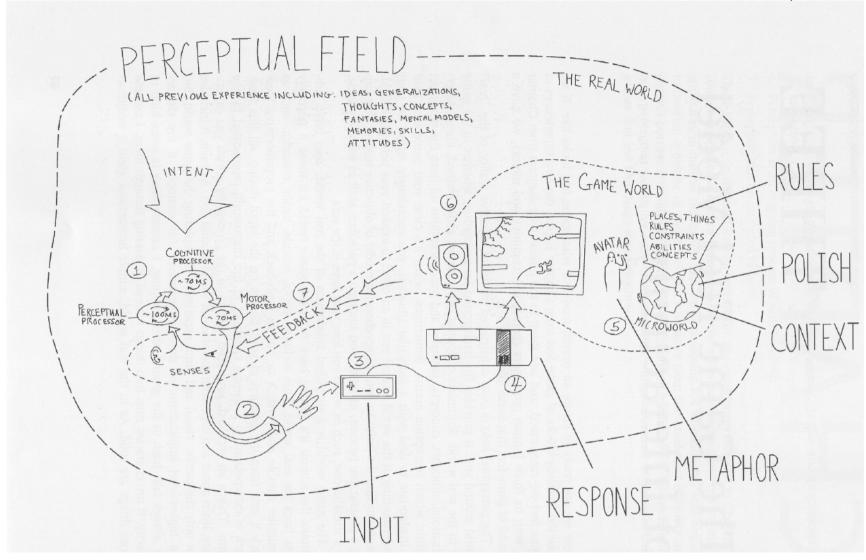
Correction Cycle

- Perceive
- Pe-plan
- Execute
- Repeat!

Meanwhile, on the Computer Side ...

6

- Must respond to human input before next perceptual cycle
 - < 100ms
- Smooth motion requires 10fps anyway, so need to run that fast
 - 30 or more better


Implications

- 1. Perception requires action
- 2. Perception is skill
- 3. Perception includes previous life experience
- 4. Perception is a whole-body experience
- 5. Tools become extensions of our bodies

A Model of Interaction

